

THE IMPACT OF R&D ON THE SINGAPORE ECONOMY:

A TIME SERIES ANALYSIS

Wong Poh Kam & Ho Yuen Ping NUS Entrepreneurship Centre National University of Singapore (NUS)

OVERVIEW

- ☐ Current empirical literature on R&D's contribution to economic growth largely focuses on:
 - a) Research at the firm or industry level (Australian Industry Commission, 1995; Link and Siegel, 2003)
 - b) Advanced countries where intensity of R&D expenditure has been relatively high and stable (Fagerberg, 1994; Grossman and Helpman, 1991)

Little focus on impact of R&D expenditure on growth performance of Newly Industrialized Economies (NIEs)

An extension of Wong, Ho and Toh (2009), our paper provides updated empirical estimates of the **impact of R&D on economic performance in Singapore** from 1978 to 2012.

METHODOLOGY

Variables

R&D measured using national R&D expenditure

TFP total factor productivity measures economic performance

Method

2 Step TFP Approach: (Terleckjy, 1974)

- 1. Derive TFP from underlying production function
- 2. Estimate equation relating R&D to TFP

Cobb-Douglas Production Function

Production Function

 $Y = AK^{\alpha}L^{\beta}$

Y = output; A = BS $^{\gamma}$ Z $^{\phi}$ = productivity; log A = TFP where S is stock of knowledge capital and Z represents other factors that affect productivity; K = stock of physical capital; L = labor employed.

FRAMEWORK FOR TFP

NUS Enterprise

Assume Constant Returns to Scale ($\alpha+\beta=1$) and perfect competition in markets for labour and capital

In Log form: TFP =
$$logB + \gamma logS + \phi log Z$$

TFP: the increase in output not explained by changes in capital and labour – "Solow residual"

Where

Log B = constant, S = stock of knowledge capital (R&D capital stock),

Z = other factors that affect productivity (e.g. education)

Note: Z not considered in this analysis

SHORT-TERM ERROR CORRECTION MODEL (ECM)

If TFP and log S are cointegrated, assuming a ADL(x,y) form, the short-run relationship is

$$\mathsf{TFP}_{\mathsf{t}} = \beta + \lambda_1 \, \mathsf{TFP}_{\mathsf{t-1}} + \ldots + \lambda_{\mathsf{x}} \, \mathsf{TFP}_{\mathsf{t-x}} + \gamma \mathsf{logS}_{\mathsf{t}} + \ldots + \gamma_{\mathsf{y}} \mathsf{logS}_{\mathsf{t-y}}$$

Where: γ (the coefficient on $\log S_t$) is the short-term elasticity of TFP with respect to knowledge stock

OTHER COMPUTED INDICATORS FROM ECM

1. Mean Lag

☐ Speed of adjustment in output growth to increases in R&D capital stock

Mean lag = $\sum i\gamma_i / \Sigma \gamma_i$; or Mean lag = $\lambda / (1-\lambda)$

2. Median Lag

 Duration of the time lapse to observe half the total lag effect of R&D on output

Median Lag = $log(0.5)/log(\lambda)$

- 3. Long Run Elasticity = $\gamma / (1-\lambda)$
- 4. Internal Rate of Return (IRR)
- ☐ Interest rate that makes the net present value of R&D investments equal to zero.

High IRR — Higher profitability of investment

CONSTRUCTING R&D CAPITAL STOCK DATA

Applying the perpetual inventory method (Mohnen et al., 1986; Coe and Helpman, 1995),

R&D capital stock in time t is:

Critical factor:
Determining initial capital stock, when
$$t=0$$
 (Grilliches, 1980)
$$S_{t} = (1-\delta) S_{t-1} + R_{t-1}$$

$$S_{t} = (1-\delta) S_{t-1} + R_{t-1}$$

Where

- S_t (S_0) = Stock of R&D capital at time t (at the beginning of the first year for which R&D expenditure data is available) (in constant prices)
- $R_t(R_0)$ = Expenditure on R&D during period (during the first year for which it is available) (in constant prices)
 - **G** = Average annual logarithmic growth of R&D expenditure over the period for which published R&D data were available
 - **δ** = Depreciation rate of knowledge (assumed to be 10%)

SINGAPORE DATA (1978-2012)

NUS Enterprise

Variable	Source	Remarks
TFP	Computed	TFP = $\log Y - \alpha \log K - \beta \log L$
R&D Capital Stock (S)	Computed	Computed using perpetual inventory method, with R&D Expenditure data, assuming 10% depreciation
GDP (Y)	Singapore Department of Statistics (DOS)	In real terms based on year 2000 prices
Labour input (L)	Ministry of Manpower (MOM) Labour Force Survey	
Stock of physical capital (K)	Computed	Computed using perpetual inventory method, with annual data on gross fixed capital formation (from DOS), assuming 5% depreciation
R&D Expenditure	A*STAR Annual National R&D Survey	

R&D EXPENDITURE IN SINGAPORE

1978-2012

NUS Enterprise

R&D CAPITAL STOCK AND TFP TREND, 1978-2012

CORRELATION BETWEEN R&D CAPITAL STOCK AND TFP, 1978-2012

TESTING CO-INTEGRATION OF TIME SERIES DATA

1. Determine stationarity of variables

Augmented Dickey Fuller (ADF) Test on TFP and Log (S)

H₀: existence of unit root (time series data are non-stationary)

Variable	ADF t-statistic (with intercept)	Prob	Conclusion
TFP	-0.92	0.77	Cannot reject null hypothesis of Non-stationarity
Log (S)	-0.71	0.96	Cannot reject null hypothesis of Non-stationarity

2. Given non-stationary nature of variables, determine if TFP and Log (S) are co-integrated? i.e. is there a long-run equilibrium relationship?

Estimate TFP = $logB + \gamma logS$

And test residuals to determine if this is a co-integrated relationship

LONG RUN RELATIONSHIP BETWEEN R&D AND TFP

NUS Enterprise

Equation: TFP = log B + γ log S Method: Least Squares					
Variable		С	oefficient		
С		0.	79* (0.056)		
Log (S) (R&D Capital Stock	0.0	90* (0.0066)			
Adjusted R ² 0.85			0.85		
F-value 190.02			190.02		
N	1978 2012				
Cointegration Test: ADF	Test for unit root in	residuals			
Series	ADF t-statistic	Prob	Conclusion		
Residuals from TFP = logB + γlogS	-3.86	0.0071	Stationary (Cointegrated)		

^{*}Significant at 1% level Standard Errors in brackets

Conclusion: Residuals are stationary, TFP and Log (S) are co-integrated i.e. there exists a long-run equilibrium relationship between R&D capital stock and TFP

SHORT RUN ERROR CORRECTION MODEL (ECM)

Estimate equation in the general form:

$$\mathsf{TFP}_{\mathsf{t}} = \beta + \lambda_1 \, \mathsf{TFP}_{\mathsf{t-1}} + \ldots + \lambda_{\mathsf{x}} \, \mathsf{TFP}_{\mathsf{t-x}} + \gamma_{\mathsf{t}} \log \mathsf{S}_{\mathsf{t}} + \ldots + \gamma_{\mathsf{t-x}} \log \mathsf{S}_{\mathsf{t-x}}$$

Result after testing down to ADL(1,0):

$$TFP_t = 0.22 + 0.73 TFP_{t-1} + 0.025 \log S_t$$

Significant lagged effect in the contribution of R&D to TFP

Computed Indicators from ECM:

Impact of R&D Capital in Singapore	
Long Run Elasticity of TFP wrt R&D	0.091
Short Run Elasticity of TFP wrt R&D	0.025
Mean Lag, in years	2.68
Median Lag, in years	2.19 R&D investment is profitable especially in
IRR (10 years)	20.8% the long run (compared to market rates of 5-6% for
IRR (5 years)	6.8% bank loans)

COMPARISON OF PARAMETER ESTIMATES FOR SINGAPORE & OTHER COUNTRIES

NUS Enterprise

Singapore Singapore Greece Countries 53 countries 22 OECD countries + Israel							
Current paper)(Ho et al, 2009)(Voutsinas & Tsamadias, 2014)Pottelsberghe de la Potterie, 2001)(Lichtenberg, 1992)(Coe and Heipman, 1995)Dependent VariableTFP (based on GDP)TFP (based on GDP)TFP (based on GDP)Private Sector TFPProduction FunctionCobb-DouglasCobb-DouglasCobb-DouglasCobb-DouglasData StructureTime series, single economyTime series, single economyTime series, single economyPanel data of time series in multiple economies in multiple economiesMeasure of R&DR&D stockR&D stockR&D stockR&D stockR&D stockPeriod of Estimation1978-20121978-20011987-20071980-199819851971-1990PARAMETERS Lambda λ0.7290.8370.0390.82NANAMean Lag2.685.12NA4.55NANA		Singapore	Singapore	Greece		53 countries	
Dependent Variable Production FunctionGDP)GDP)TFPReal GDP per capitaPrivate Sector TFPProduction FunctionCobb-DouglasCobb-DouglasCobb-DouglasCobb-DouglasCobb-DouglasData StructureTime series, single economyTime series, single economyPanel data of time series in multiple economiesPanel data of time series in multiple economiesMeasure of R&DR&D stockR&D stockR&D stockR&D stockR&D expenditureR&D stockPeriod of Estimation1978-20121978-20011987-20071980-199819851971-1990PARAMETERS Lambda λ0.7290.8370.0390.82NANAMean Lag2.685.12NA4.55NANA		(Current paper)	(Ho et al, 2009)	`	Pottelsberghe de	(Lichtenberg, 1992)	•
Data StructureTime series, single economyTime series, single economyTime series, single economyTime series, single economyPanel data of time series in multiple economiesPanel data of time series in multiple economiesMeasure of R&DR&D stockR&D stockR&D stockR&D stockR&D stockR&D expenditureR&D stockPeriod of Estimation1978-20121978-20011987-20071980-199819851971-1990PARAMETERS Lambda λ0.7290.8370.0390.82NANAMean Lag2.685.12NA4.55NANA	Dependent Variable	· ·	`	`		Real GDP per capita	Private Sector TFP
Data StructureTime series, single economyTime series, single economyPanel data of time series in multiple economiesMeasure of R&DR&D stockR&D stockR&D stockR&D expenditureR&D stockPeriod of Estimation1978-20121978-20011987-20071980-199819851971-1990PARAMETERS Lambda λ0.7290.8370.0390.82NANAMean Lag2.685.12NA4.55NANA	Production Function	Cobb-Douglas	Cobb-Douglas	Cobb-Douglas	Cobb-Douglas	Cobb-Douglas	Cobb-Douglas
Period of Estimation 1978-2012 1978-2001 1987-2007 1980-1998 1985 1971-1990 PARAMETERS Lambda λ 0.729 0.837 0.039 0.82 NA NA Mean Lag 2.68 5.12 NA 4.55 NA NA	Data Structure	· ·	·		series in multiple		
PARAMETERS Lambda λ 0.728 0.837 0.039 0.82 NA NA Mean Lag 2.68 5.12 NA 4.55 NA NA	Measure of R&D	R&D stock	R&D stock	R&D stock	R&D stock	R&D expenditure	R&D stock
Lambda λ 0.738 0.837 0.039 0.82 NA NA Mean Lag 2.68 5.12 NA 4.55 NA NA	Period of Estimation	1978-2012	1978-2001	1987-2007	1980-1998	1985	1971-1990
Mean Lag 2.68 5.12 NA 4.55 NA NA	<u>PARAMETERS</u>						
	Lambda λ	0.729	0.837	0.039	0.82	NA	NA
Median Lag 2.19 3.89 NA 3.49 NA NA	Mean Lag	2.68	5.12	NA	4.55	NA	NA
	Median Lag	2.19	3.89	NA	3.49	NA	NA

'Cycle time' to create economic impact has improved in recent years in Singapore

COMPARISON OF PARAMETER ESTIMATES FOR SINGAPORE & OTHER COUNTRIES

➤ R&D capital in Singapore appears to be <u>less productive</u> than in OECD countries, in terms of responsiveness of output to research capital in the long run.

COMPARISON OF PARAMETER ESTIMATES FOR SINGAPORE & OTHER COUNTRIES

Long run R&D productivity gap between Singapore and other countries may be attributed to:

1.	Nature	of R&D	activities	in	Sing	jar	ore
					_	_	

- More downstream or focused in fields with shorter term economic impact (evidenced by Singapore's shorter mean and median lag values)
- ☐ Investments in emerging areas (e.g. life sciences) intensified only in the 2000s

2. 'Leakage' of Value Capture (Porter, 1990; Lepak, Smith & Taylor, 2007)

- ☐ Unable to fully capture value created due to the lack of domestic demand and market conditions in Singapore
- ☐ Presence of foreign firms which have avenues for repatriating income to their home countries or other markets

3. Relatively Lower level of Private sector R&D activities in Singapore

In 2011, government and higher education sectors' share in total R&D expenditure was 38% in Singapore (OECD countries ≈ 30%)

COMPARATIVE ANALYSIS 1:

Testing for Structural Breaks

Aim:

To determine if there has been a significant shift in the short-run elasticity of TFP w.r.t R&D, as a result of a change in policy stances.

Chow Breakpoint Test for structural breaks:

- ☐ In year 2000 (compare 1978-2000 vs 2001-2012)
- ☐ In year 1995 (compare 1978-1995 vs 1996-2012)
- ☐ In year 1990 (compare 1978-1990 vs 1991-2012)

Periods in which there were notable new policies and institutional changes in Singapore's Science & Technology fields.

Presence of structural breaks will imply that policy changes have induced changes in R&D productivity

CHOW TEST FOR STRUCTURAL BREAKS

Apply Chow Test to ADL (1,0) ECM

$$TFP_{t} = \beta + \lambda_{1} TFP_{t-1} + \gamma_{t} \log S_{t}$$

Break Point	F-statistic	Prob	Conclusion
2000 (ASTAR, BMRC, SERC established)	0.65	0.59	No break
1995 (2 nd NSTP launched)	1.19	0.33	No break
1990 (NSTB established, 1 st NSTP launched)	0.27	0.85	No break

- Short-run elasticity of TFP w.r.t R&D has not changed significantly over the years.
- Institutional changes and introduction of national S&T plans are not associated with improved productivity of R&D in the short run

COMPARATIVE ANALYSIS 2:

Causality between Public and Private R&D

Economics literature has studied extensively on the "social returns" generated by public R&D.

Impact of public sector R&D

- ✓ Direct effects on productivity
- ✓ Generates externalities and spillovers; stimulates private sector R&D

Private sector R&D outcomes depends on

- a) Private sector efforts
- b) Pool of knowledge that is accessible to the private sector (ie. the outcomes of public R&D)

Aim:

To determine if there is causality between public and private R&D spending in Singapore.

Hypothesis:

Significant unidirectional causality from Public sector R&D to Private sector R&D

CAUSALITY BETWEEN PUBLIC AND PRIVATE R&D

Run Granger Causality Tests for causality in both directions $(H_0: \sigma_1,...,\sigma_x = 0)$

(1) Public R&D causes Private R&D

$$\log \text{Pte_S}_{t} = \alpha + \phi_{1} \log \text{Pte_S}_{t-1} + \dots + \phi_{x} \log \text{Pte_S}_{t-x} + \\ \sigma_{1} \log \text{Pub_S}_{t-1} + \dots + \sigma_{x} \log \text{Pub_S}_{t-x}$$

(2) Private R&D causes Public R&D

$$\log \text{Pub_S}_{t} = \alpha + \phi_{1} \log \text{Pub_S}_{t-1} + \dots + \phi_{x} \log \text{Pub_S}_{t-x} + \sigma_{1} \log \text{Pte_S}_{t-1} + \dots + \sigma_{x} \log \text{Pte_S}_{t-x}$$

Granger Causality Tests (H_0 : $\sigma_1,...,\sigma_x = 0$)

Coefficient Conclusion Sig

NUS Enterprise

Public sector R&D contributes to

increased private sector R&D, with a

one year lag between cause and effect

Dependent = Private R&D capital stock at time t

$$Log Pte_S_t = \alpha + \phi_1 log Pte_S_{t-1} + ... + \phi_x log Pte_S_{t-x} + \delta_1 log Pub_S_{t-1} + ... + \delta_x log Pub_S_{t-x}$$

Constant	0.141*	0.067	
Private R&D at t-1	1.295***	0.000	Public R&D
Private R&D at t-2	-0.399***	0.007	causes Private
Public R&D at t-1	0.270**	0.029	R&D
Public R&D at t-2	-0.170	0.1907	

2) Dependent = Public R&D capital stock at time t

$Log Pub_{-}S_{t} = \alpha + \varphi_{1} log Pub_{-}S$	$_{t-1} + \dots + \varphi_{x} \log Pub_S_{t-x}$	+ o ₁ log Pie_S ₁	$t_{t-1} + \dots + O_x \log Pte_S_{t-x}$
Constant	0.133**	0.028	
Public R&D at t-1	1.766***	0.000	Private R&D
Public R&D at t-2	-0.809***	0.000	does not cause
			N Public R&D

-0.123

0.154

Note: Results reported for VAR(2) structure. Findings were consistent when different lag structures were used.

0.337

0.157

THE IMPACT OF R&D ON THE SINGAPORE ECONOMY

Private R&D at t-1

Private R&D at t-2

KEY FINDINGS

NUS Enterprise

1

■ Economic impact of R&D in the long term (elasticity= 0.091) is almost four times as much as the short run impact (elasticity = 0.025).

Short run:

□ R&D productivity in Singapore is **comparable** to that of smaller advanced economies in the OECD.

Long run:

- ☐ Singapore's R&D productivity <u>lags behind</u> the small OECD countries (Singapore LR elasticity= 0.091, OECD= 0.13-0.17)
- □ Compared to G7 nations, R&D productivity gap is even more considerable. (G7 LR elasticity= 0.234)

may be due to

- a) Nature of R&D activities in Singapore vs. OECD countries
- b) "Leakage" of value capture

KEY FINDINGS

NUS Enterprise

3

Comparative Analysis 1:

☐ Impact of R&D in Singapore has not changed significantly in the last 30 years — no evidence of a structural break that induced higher short-term productivity of R&D

4

Comparative Analysis 2:

☐ Causality analysis shows that public R&D appear to generate positive externalities which in turn, stimulates R&D activity in the private sector and augments private R&D capital stock in Singapore

POLICY IMPLICATIONS FOR INCREASING ECONOMIC IMPACT OF R&D INVESTMENT

NUS Enterprise

1. Policies to facilitate a greater degree of technology transfer from public to private sector

Micro-targeted:

Financial grants for companies to license-in technologies from PRIs & universities; incentives for spin-off formation

Macro-Level:

Vibrant entrepreneurship ecosystem with ready venture financing and incubation support; infrastructure for translational research

2. Initiatives to improve absorptive capacity of indigenous firms

- Refine and extend existing programs to emphasize absorptive capacity in the form of expertise to integrate externally-sourced R&D into innovative products and services
- Eg. T-UP program in Singapore has improved technology learning and enterprise innovation

POLICY IMPLICATIONS FOR INCREASING ECONOMIC IMPACT OF R&D INVESTMENT

3. Policies to retain value created by R&D investments within Singapore

- Increase localization of value capture activities of foreign firms
- Position Singapore as base for MNCs to locate their IP portfolio management activities for servicing the region (e.g. Patent Box)

THANK YOU

REFERENCES

Australian Industry Commission (1995). Research and Development. Report no. 44. Government Publishing Service, Canberra.

Coe, D. and E. Helpman (1995). International R&D Spillovers. European Economic Review, 39, pp. 859-87.

Guellec, D. and B. van Pottelsberghe de la Potterie (2001). R&D and Productivity Growth: Panel Data Analysis of 16 OECD Countries. STI Working Paper 2001/3, Directorate for Science, Technology and Industry. OECD, Geneva.

Lichtenberg, F.R. (1992). R&D Investment and International Productivity Differences. NBER Working Paper No. 4161, National Bureau of Economic Research.

Ho, Y.P., Wong, P.K. and Toh, M.H. (2009). The Impact of R&D on the Singapore Economy: An Empirical Evaluation. The Singapore Economic Review, 54 (1), pp. 1-20

Voutsinas, I. and C. Tsamadias (2014). Does Research and Development Capital Affect Total Factor Productivity? Evidence from Greece. Economics of Innovation and New Technology, 23(7), pp. 631-651.

BACK-UP SLIDES

SHORT RUN ERROR CORRECTION MODEL

Equation: TFP _t = β + λ TFP _{t-1} + γ log S _t Method: Least Squares	
Variable	Coefficient
С	0.22* (0.098)
TFP _{t-1}	0.73** (0.12)
Log S _t (R&D Capital Stock)	0.025* (0.018)
Adjusted R ²	0.85
F-value	190.02
N	1979 2012

^{*}Significant at 5 % level Standard Error in brackets

^{**} Significant at 1% level

ANNEX

Impact of Public vs. Private Sector R&D on TFP

Lichtenberg (1992) suggested that marginal product of government-funded R&D capital is **lower** than private sector R&D capital; countries with higher government share in R&D spending exhibited lower productivity growth.

Public sector share in Singapore R&D spending

ANNEX

Impact of Public vs. Private Sector R&D on TFP

Long Run TFP equation: (Guellec and van Pottelsberghe de la Potterie, 2001)

TFP = log B +
$$\gamma_{pte}$$
 log Pte_S + γ_{pub} log Pub_S

Where:

Pte_S = Private R&D capital stock

Pub_S= Public R&D capital stock (PRIs, IHLs and government)

Computed using perpetual inventory method, with private and public R&D expenditure data from the A-STAR Annual Survey of R&D (δ = 10%)

ADF unit root tests on log (Pte_S) and log (Pub_S) found that

Log (Pte_S) is non-stationary

Log (Pub_S) is found to be stationary.

Violates requirement of non-stationary variables in the long-run equation

Results of co-integration testing in the TFP equation needs to be interpreted with caution

LONG RUN RELATIONSHIP WITH TFP

Estimate: TFP = log B +
$$\gamma_{pte}$$
 log Pte_S + γ_{pub} log Pub_S

And test residuals to determine if TFP, Log (Pte_S) and Log (Pub_S) are co-integrated

Results:

- > Residuals are weakly stationary (H₀ rejected only in ADF test without intercepts)
- Tentatively suggest co-integration i.e. there exists a long run equilibrium relationship between TFP and public & private R&D capital stock

Short Run ECM

ECM representation in the general form:

$$\text{TFP}_{t} = \beta + \lambda_{1} \text{ TFP}_{t-1} + \ldots + \lambda_{x} \text{ TFP}_{t-x} + \gamma_{\text{pte},t} \log \text{Pte}_S_{t} + \ldots + \gamma_{\text{pte},t-x} \log \text{Pte}_S_{t-x} + \gamma_{\text{pub},t} \log \text{Pub}_S_{t} + \ldots + \gamma_{\text{pub},t-x} \log \text{Pub}_S_{t-x}$$

Tested down to ADL (1,1)

PRIVATE AND PUBLIC R&D: COMPUTED INDICATORS FROM ECM

	Total R&D Capital Stock	Private R&D capital stock	Public R&D capital stock
Long Run Elasticity of TFP w.r.t R&D	0.091	0.055	0.035
Short Run Elasticity of TFP w.r.t R&D	0.025	0.016	0.010
Mean Lag, in years	2.68	1.27	2.69
Median Lag, in years	2.19	1.24	3.21
Internal Rate of Return 10 years	20.8%	21.1%	23.8%
Internal Rate of Return 5 years	6.8%	5.9%	12.5%

For both Private & Public R&D capital stock:

☐ Long run elasticity of TFP w.r.t R&D is approximately 3.5xs of short run elasticity

Comparing Public & Private sectors:

- □ Private R&D has higher TFP/R&D elasticity ——→ more productive than public R&D
- Private R&D has more immediate impact on TFP
- But Public R&D has higher IRR in both the 5-year & 10-year period